If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-51x+72=0
a = 2; b = -51; c = +72;
Δ = b2-4ac
Δ = -512-4·2·72
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-51)-45}{2*2}=\frac{6}{4} =1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-51)+45}{2*2}=\frac{96}{4} =24 $
| 2x+37=5-5x | | 4=6n=43 | | -18=-2+4x | | (7x+3)°=(8x+1)° | | 1-u=293 | | 3m*4=31 | | 3^(5x-4)+3^(5x)=82 | | 20−3r=5 | | 3x-50=+32 | | 24a-12=6a+9 | | -269=2x+5(5+8x) | | -6v+4(v-3)=-24 | | 3•4x=2x+7 | | 3x+4=424 | | 5w^2-55w-30=0 | | 3x-5(x-5)=-5+4x-4 | | 4=3v−5 | | -38-8b=6(1-5b) | | 3x-39+2x+10=180 | | x^-2=16/9 | | 15+2x=5+3 | | -19q=-14-17q | | 14w=40+6w | | t+18-1t=3(2t-2) | | 1/2(6n+4)=3n+3 | | (2/3)x+5=11 | | 16=3v-7 | | 34-4k=-3(6k-2) | | ((88+x)/2)=90 | | 3u-1=13 | | 3d-2=22 | | -4(1+7n)-5=20+n |